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An investigation of the relative stability of the two known

polymorphs of RuSi, having the "-FeSi and CsCl structures,

has been made by ®rst-principles pseudopotential calculations.

The resulting cell volumes and fractional coordinates at P = 0

are in good agreement with experiment. Application of high

pressure to the "-FeSi phase of RuSi is predicted to produce a

structure having almost perfect sevenfold coordination.

However, it appears that RuSi having the CsCl-type structure

will be the thermodynamically most stable phase for pressures

greater than 3.6 GPa. Fitting of the calculated internal energy

versus volume to a fourth-order logarithmic equation of state

led to values (at T = 0 K) for the bulk modulus, K0, of 202 and

244 GPa for the "-FeSi and CsCl phases, respectively, in

excellent agreement with experiment. Band-structure calcula-

tions for both phases are also presented.
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1. Introduction

In a recent paper (VocÏadlo et al., 1999) we have used ®rst-

principles pseudopotential calculations to examine the stabi-

lity and physical properties of the sevenfold-coordinated "-
FeSi structure relative to various hypothetical polymorphs,

concluding that a CsCl-type structure would be the thermo-

dynamically most stable phase for pressures greater than

13 GPa (a similar transition pressure, �15 GPa, has also been

reported recently by Moroni et al. 1999). However, FeSi with

the CsCl structure has not yet been observed in bulk material,

experimental studies to date having failed to detect any phase

transitions from the "-FeSi form under conditions of high

pressure and temperature (Knittle & Williams, 1995; Guyot et

al., 1997), although it has been reported in thin ®lms of FeSi

grown on silicon substrates (von KaÈnel et al., 1992, 1994;

Kafader et al., 1993; Dekoster et al., 1997). The compressibility

of FeSi is of considerable interest to Earth scientists, silicon

being a possible alloying element in the Earth's outer core.

There is, however, considerable disagreement between the

values of the bulk modulus, K0, determined by experiment;

these range from 209 (6) to 115 GPa, although it seems that

the most likely value is �170±175 GPa, results of 172 (3),

176 (3) and 173 GPa having been reported by three separate

research groups using different methods (see VocÏadlo et al.,

1999, for further details). A number of calculations of K0 at

T = 0 K have been made recently using both the local density

approximation (LDA) and the generalized gradient approx-

imation (GGA), leading to values of 230 GPa (LDA) and

195 GPa (GGA) (Qteish & Shawagfeh, 1998); 227 GPa

(GGA) (VocÏadlo et al., 1999); 209 GPa (GGA) (Moroni et al.,
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1999); 220 GPa (LDA) (Jarlborg, 1999). Zinoveva et al. (1974)

and Sarrao et al. (1994) reported that K0 was strongly

temperature dependent between 0 and 300 K, but even after

allowing for this the results of the calculations [with the

possible exception of the GGA result of Qteish & Shawagfeh

(1998)] appear to lie at the extreme end of the spread of

experimental values.

Ruthenium silicide, RuSi, provides an interesting analogue

of FeSi, with, however, the important difference that two

polymorphs can be synthesized, one having the "-FeSi struc-

ture and the other having the CsCl structure, both of which

persist at room temperature and pressure (Buddery & Welch,

1951; Weitzer et al., 1988; GoÈ ransson et al., 1995). In contrast

with earlier observations by Weitzer et al. (1988), Buschinger,

Geibel et al. (1997) reported that a phase transition between

the two structures, probably of ®rst order, occurs at 1578 K;

annealing below this temperature (e.g. at 1563 K) was found to

reduce greatly the amount of CsCl-type material in a multi-

phase sample, whereas annealing at 1623 K produced little

effect on the ratio of the two phases, observations which were

taken to indicate that the CsCl-type was the more stable at

high temperatures and that the phase transition was rather

sluggish. The stoichiometry of the initial sample was also

found to in¯uence the material formed; in samples with excess

Ru, the CsCl-type phase was predominant, whereas samples

de®cient in Ru showed a mixture of both RuSi phases and of

Ru2Si3. The standard enthalpy of formation of RuSi has been

measured at 1400 and 1473 K (Topor & Kleppa, 1988) but,

unfortunately, only for the CsCl phase. The crystal structure of

the "-FeSi phase of RuSi at room pressure and temperature

has been determined from Rietveld re®nement of multiphase

X-ray powder data by GoÈ ransson et al. (1995). A number of

physical properties of RuSi have also been measured recently,

including the compressibility of both phases up to �40 GPa,

determined by angle-dispersive X-ray powder diffractometry

with a diamond-anvil cell at the ESRF, Grenoble (Buschinger,

Guth et al., 1997), values of 255 � 15 and 215 � 15 GPa being

reported for the CsCl-type and "-FeSi-type materials,

respectively (note that the paper by Buschinger, Guth et al.,

1997, contains a number of misprints in which these

compressibility values are transposed). No evidence of pres-

sure-induced phase transitions were found in this investiga-

tion. The electrical properties have been investigated by

Buschinger, Geibel et al. (1997), Buschinger, Guth et al. (1997)

and Hohl et al. (1998), who found the CsCl-type material to be

metallic and the "-FeSi-type to be a narrow-gap semi-

conductor, the size of the band gap being given as 0.2±0.3 eV

(Buschinger, Guth et al., 1997) and 0.26 eV (Hohl et al., 1998).

In this respect the observed properties of CsCl-type RuSi may

differ from those expected for CsCl-type FeSi, in which band-

structure calculations indicate either a narrow gap (Girlanda

et al., 1994; VocÏadlo, Price & Wood, unpublished) or a

pseudogap (Moroni et al., 1999) at the Fermi level. Similarly,

the magnetic susceptibility of the two compounds is different;

"-FeSi shows strongly temperature-dependent paramagnetism

below room temperature (Paschen et al., 1997) whereas, in all

three studies of "-FeSi-type RuSi, small temperature-inde-

pendent diamagnetism was observed (Buschinger, Geibel et

al., 1997; Buschinger, Guth et al., 1997; Hohl et al., 1998).

A detailed discussion of the "-FeSi crystal structure

(Pauling & Soldate, 1948) has been given by Wood et al. (1996)

and VocÏadlo et al. (1999) and it will, therefore, be described

only brie¯y here. The structure is cubic, P213, Z = 4, with both

Fe and Si atoms lying on threefold axes, occupying the 4(a) (x,

x, x) sites. In an idealized "-FeSi structure, xFe = +0.15451 and

xSi =ÿ0.15451; each atom then has as its primary coordination

seven equidistant atoms of the other kind, with six equidistant

atoms of its own kind as next-nearest neighbours. The value of

x required to produce this ideal sevenfold coordination is

given by x = 1/4�, where � is the golden ratio (1 + 51/2)/2 (Wells,

1956). In real "-FeSi structures both atoms are slightly

displaced from their ideal positions, producing subtly different

coordination. In the case of RuSi (GoÈ ransson et al., 1995),

these displacements are slightly larger than in FeSi, with xRu =

+0.1284 (7) and xSi = ÿ0.1643 (11); the seven nearest-neigh-

bour coordination distances for both Ru and Si atoms are then

2.383, 2.395 (�3) and 2.706 AÊ (�3), with six equal next-

nearest-neighbour distances of 2.879 AÊ around the Ru atoms

and of 2.926 AÊ around the Si atoms. The "-FeSi structure may

be regarded as being derived from that of rock salt by

displacement of both atoms along h111i directions (Mattheiss

& Hamann, 1993; Wood et al., 1996) and thus continuous

transitions to either the sixfold-coordinated NaCl structure or

(via the NaCl structure) to the eightfold-coordinated CsCl

structure are, in principle, possible. However, it has been

found that for FeSi the calculated free energy difference (at

P = 0 and T = 0) between the "-FeSi and NaCl structures is

large, being in the range 1.4±1.6 eV per FeSi unit (Mattheiss &

Hamann, 1993; VocÏadlo et al., 1999; Moroni et al., 1999) and

thus a transition between "-FeSi-type and CsCl-type phases in

FeSi or RuSi would seem to require a high activation energy.

The present computer simulation study of RuSi was carried

out with the intention of addressing four main points. Firstly,

examination of the calculated relative stabilities of "-FeSi-type

and CsCl-type RuSi would provide a good test of the validity

of the conclusions we had drawn with respect to the stability of

various hypothetical phases of FeSi (VocÏadlo et al., 1999).

Secondly, our calculation of the compressibility of FeSi had

produced a value which did not seem to be in agreement with

experiment; similar calculations of compressibility of the two

RuSi phases would provide a check on the methodology.

Thirdly, it was of interest to examine the response to pressure

of the atomic coordinates of the "-FeSi phase of RuSi and the

accuracy to which the reported crystal structure could be

reproduced. Finally, RuSi is of some interest to physicists as it

provides a non-magnetic reference system to FeSi, a material

with unusual electrical and magnetic properties; no band-

structure calculations for the two RuSi phases have been

reported and these might, therefore, be of some value.

The calculations for RuSi presented here utilize a pseudo-

potential method, resulting in a signi®cant reduction in

computational requirements from those required for all-elec-

tron methods and thereby allowing ef®cient calculation of the

internal energy of the "-FeSi-type and CsCl-type phases of



RuSi for a range of values of pressure, P, and volume, V.

Incorporation of the effect of atomic vibrations due to

temperature would, however, be both extremely dif®cult and

computationally very expensive and so this has not been

attempted in the present calculations; these are, therefore,

effectively all at 0 K and thus only the P;V; 0 section of the

P;V;T phase diagram is accessible. This is a drawback of the

present study since it means that we are unable to address

directly the stability of the two RuSi polymorphs at high

temperature or to make comparisons with the high-tempera-

ture experimental data (we are similarly unable to study the

effects of small changes in the stoichiometry). In view of the

known insensitivity of the structure of FeSi itself to changes in

temperature (Watanabe et al., 1963), we believe that this

limitation is much less important when addressing the relative

stability, with respect to pressure, of the RuSi polymorphs at

room temperature. However, a similar analogy with FeSi, for

which the effect of thermal activation on some of the physical

properties is known to be large (due to the narrow band gap),

suggests that neglect of temperature might lead to errors when

calculating even such quantities as the elastic constants

(Zinoveva et al., 1974; Sarrao et al., 1994).

2. Calculation method

The calculations presented here are based on density func-

tional theory within the generalized gradient approximation

using ultrasoft non-norm-conserving Vanderbilt pseudo-

potentials, implemented in the computer program VASP

(Vienna ab initio simulation package; Kresse & FurthmuÈ ller,

1996a,b). Since the details of this approach have been

described in the paper by VocÏadlo et al. (1999), only a brief

summary will be given here.

In this method the valence orbitals are expanded as plane

waves and the interactions between the core and valence

electrons are described by pseudopotentials. For Ru a [Kr]

core was assumed, with valence electrons 5s1 4d7, for Si an

[Ne] core was assumed, with valence electrons 3s2 3p2. Details

of the construction of the pseudopotentials used in the present

work are given by Kresse & Hafner (1994) and Moroni et al.

(1997). When using VASP, the ground state is calculated

exactly for each set of ionic positions and the electronic free

energy is taken as the quantity to be minimized. Relaxation of

atomic coordinates and axial ratios is allowed by the program;

when performing such operations these parameters are

changed iteratively so that the sum of the lattice energy and

electronic free energy converges to a minimum value.

The calculations discussed below were carried out using the

primitive unit cells of the "-FeSi- and CsCl-type structures. An

appropriate number of sampling points in reciprocal space to

be used in the calculations had been determined during our

investigation of the FeSi polymorphs. For the energy±volume

calculations, similarly spaced grids of k-points were used, 5� 5

� 5 for the "-FeSi-type and 11 � 11 � 11 for the CsCl-type,

leading to 11 and 56 k-points, respectively, in the symmetry-

irreducible volume of the Brillouin zone. For the calculations

of the electronic density of states (DOS), ®ner grids (9� 9� 9

for the "-FeSi-type; 15� 15� 15 for the CsCl-type) were used,

with sampling intervals of approximately 0.06 and 0.03 eV in

energy.

The procedure adopted to determine the equations of state

was to use VASP to calculate the internal energy (E) of the

crystal at a set of chosen volumes (V). For the CsCl modi®-

cation there are no parameters to relax. In the case of the

"-FeSi-type structure the fractional coordinates of both Ru

and Si were allowed to vary. Although no symmetry

constraints were imposed during the relaxation of these

coordinates, they retained the symmetry of the space group to

at least ®ve signi®cant ®gures. When calculating the electronic

density of states for the relaxed RuSi structure, however, the

coordinates were returned to their exactly correct symmetrical

form as this greatly increases the speed and accuracy of the

calculations. Since T = 0, the pressure (P) at any point on the E

versus V curve may be found using the standard thermo-

dynamic result P = ÿ(@E/@V)T = 0, the actual values being

determined by ®tting the E versus V curve to a fourth-order

logarithmic equation of state (see below). Knowing P, V and

E, the enthalpy H may be calculated. Since T = 0, the enthalpy

is equal to the Gibbs free energy, G, and thus the most stable

phase at any given pressure may be determined; for the special

case of ambient pressure (P' 0, T = 0), G = E and the relative

stability of the different polymorphs can be determined simply

from the positions of the minima in the E versus V curves.

3. Results and discussion

3.1. Properties at P = 0

Fig. 1 shows the internal energy, E, versus volume, V, curves

for the two RuSi polymorphs considered. The full lines shown

in the ®gure were obtained by ®tting the data to a fourth-order

logarithmic equation of state, of the form

E � V0f p�ln�V0=V��2 � q�ln�V0=V��3 � r�ln�V0=V��4g � E0

where

p � K0=2; q � K0�K00 ÿ 2�=6;

r � K0�1� �K00 ÿ 2� � �K00 ÿ 2�2 � K0K000 �=24;

V0 and E0 are the volume and internal energy at P = 0. K0 is

the (isothermal) bulk modulus (since T = 0 K, the adiabatic

and isothermal bulk moduli will be equal) and K0
0 and K0

00 are

its ®rst and second derivatives, respectively, with respect to

pressure. This equation of state has been found recently to

give a signi®cantly better ®t to the results of energy±volume

calculations than the commonly used third-order Birch±

Murnaghan equation (VocÏadlo et al., 2000) indicated by the

dashed line in Fig. 1(b). The results obtained from ®tting the

equations of state are shown in Table 1. Clearly, when P = 0,

RuSi with the "-FeSi structure is the more stable of the two

polymorphs. The energy difference between this structure and

the CsCl modi®cation (0.013 eV atomÿ1) is, however, much
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smaller than that found for FeSi (0.042 eVatomÿ1) as might be

expected from the experimental observation that both phases

of RuSi exist at room temperature and pressure. The experi-

mental values of the lattice parameters given in the literature

vary from about 2.907 to 2.913 AÊ for the CsCl phase and 4.701

to 4.708 AÊ for the FeSi phase (Weitzer et al., 1988; GoÈ ransson

et al., 1995; Buschinger, Geibel et al., 1997; Hohl et al., 1998).

The values obtained in the present study, 2.948 and 4.753 AÊ ,

are in good agreement with experiment, differing by only

about 1.2% for the CsCl and 1.0% for FeSi phases, respec-

tively; however, in contrast with our previous results for FeSi

itself in which the cell parameters were underestimated, in the

case of RuSi VASP provides an overestimated cell. The

predicted fractional coordinates for the "-FeSi phase at P = 0

are xRu = 0.1293 and xSi = ÿ0.1626, which are in excellent

agreement with the experimental results of GoÈ ransson et al.

(1995) who obtained values of xRu = 0.1284 (7) and xSi =

ÿ0.1643 (11). As in the case of FeSi, it appears, therefore, that

the pseudopotential method is able not only to determine

correctly the stable polymorph at ambient pressure, but also to

reproduce the observed crystal structure with an accuracy

approaching that to which it has been determined experi-

mentally.

Figs. 2 and 3 show the calculated electronic density of states

(DOS), the local density of states associated with each of the

atoms in the structure (LDOS) and the number of states

(NOS) for the "-FeSi and CsCl phases of RuSi. These calcu-

lations indicate that the "-FeSi phase is a narrow-band-gap

semiconductor. A value for the band gap of 0.20 eV was

obtained from a calculation using a 7� 7� 7 k-point grid and

an energy-sampling interval of

0.02 eV, in good agreement with

the experimental results of

Buschinger, Guth et al. (1997)

and Hohl et al. (1998), who

obtained values of 0.2±0.3 eV

and 0.26 eV, respectively.

Calculation of the density of

states for such materials

involves a compromise between

smoothness and resolution

unless unfeasibly ®ne sampling

intervals are used; those shown

in Fig. 2 were obtained using a

9 � 9 � 9 k-point grid and an

energy sampling interval of

0.06 eV, which produced a value

of 8.86 eV for the Fermi level,

EF , and a slightly reduced band

gap. The form of the DOS for

the "-FeSi phase of RuSi is

qualitatively similar to that of

FeSi itself (VocÏadlo et al., 1999).

VASP allows projection of the

LDOS so as to discriminate

between electrons with s-, p-

and d-like character. It can be

seen from Fig. 2(b) that the DOS around EF is dominated by

the contribution from the Ru d-electrons. There is, however, a

signi®cant Si p- and d-electron contribution (Fig. 2c) in the

range from about 0 to 7 eV below EF, indicating a high degree

of covalency in the bonding. As expected for a semiconductor,

the NOS (Fig. 2d) is horizontal at EF .

It can be seen from Fig. 3 that our calculations indicate that

the CsCl phase is metallic, in agreement with the experimental

data of Buschinger, Geibel et al. (1997), Buschinger, Guth et

al. (1997) and Hohl et al. (1998). The DOS (Fig. 3a) is quali-

tatively similar to that expected for CsCl-type FeSi. However,

in the case of FeSi the DOS falls either to zero (Girlanda et al.,

1994; VocÏadlo, Price & Wood, unpublished) or very close to

zero (Moroni et al., 1999) at EF , whereas for RuSi there is

merely a pronounced dip in the density of states around the

Fermi level (calculated to lie at 9.94 eV). It should be noted

that this dip is also present in the DOS of the "-FeSi phase,

where it lies about 1 eV above EF . Once again, the DOS near

EF is dominated by the Ru d-electrons (Fig. 3b), but with

signi®cant Si p- and d-electron contributions (Fig. 3c).

3.2. Behaviour at high pressure

Fig. 4 shows the effect of pressure on the fractional coor-

dinates xRu and xSi of the "-FeSi phase of RuSi (for compar-

ison the results of our previous calculations for FeSi are also

shown). In all cases the Ru and Si coordinates were relaxed

from a starting structure with ideal sevenfold coordination, i.e.

from x =�1/4� (�0.15451). In no case was there any tendency

towards relaxation away from the "-FeSi structure, the beha-

Table 1
Crystal structures and physical properties of "-FeSi- and CsCl-type RuSi.

(a) Internal energies and structural parameters at P = 0.

E0 (eV atomÿ1) V0 (AÊ 3 atomÿ1) Cell (AÊ ) Relaxed coordinates

"-FeSi-type Present work² ÿ7.8673 (1) 13.420 (1) 4.7528 (2) xRu = 0.1293
xSi = ÿ0.1626

Experimental values 12.986±13.044³ 4.701±4.708³ xRu = 0.1284 (7)§
xSi = ÿ0.1643 (11)§

CsCl-type Present work² ÿ7.854 (1) 12.805 (4) 2.9476 (3)
Experimental values 12.283±12.359³ 2.907±2.913³

² The values of E0 and V0 were found by ®tting to a fourth-order logarithmic equation of state (for details see text). Figures in
parentheses are estimated standard deviations applying to the least signi®cant ®gures. It should be noted, however, that these are
derived solely on the basis of the goodness of ®t to the chosen equation of state and take no account of errors in the simulation
process. ³ Weitzer et al. (1988), GoÈ ransson et al. (1995), Buschinger, Geibel et al. (1997) and Hohl et al. (1998). § GoÈ ransson et
al. (1995).

(b) Compressibilities and their derivatives.

K0 (GPa) K0
0 K0

0 0 (GPaÿ1)

"-FeSi-type Present work² (ln 4) 202.1 (1) 5.411 (8) ÿ0.0601 (5)
(BM3) 202 (3) 4.49 (4)

Experimental values³ 215 (15) 7.63
CsCl-type Present work² (ln 4) 243.6 (5) 4.800 (5) ÿ0.0284 (3)

(BM3) 233 (2) 4.32 (3)
Experimental values³ 255 (15) 6.71

² Values labelled ln 4 and BM3 were obtained by ®tting to fourth-order logarithmic and third-order Birch±Murnaghan equations of
state, respectively (for details see text). The comment above with regard to the estimated standard deviations is equally applicable to
this section. ³ Buschinger, Guth et al. (1997).



viour seen being very similar to that found previously for

"-FeSi itself. As P increases, the magnitudes of the two coor-

dinates become more equal and closer to the value required

for an ideal sevenfold-coordinated structure, although the

asymptotic trend appears to be towards a slightly lower value.

At extreme pressures (�900 GPa, a = 3.684 AÊ ) |xRu| = |xSi| =

0.1528 and the two atoms then lie 0.006 AÊ away from their

ideal positions. It is probable that this slight departure from

the ideal sevenfold-coordinated structure represents a real

effect, rather than an artefact of the pseudopotential method,

since it appears to follow the trend established at low pres-

sures. Possibly, it re¯ects the fundamentally non-spherical

atoms required by the geometry of the bonding (Pauling &

Soldate, 1948; VocÏadlo et al., 1999).

Although RuSi with the "-FeSi structure shows no indica-

tion of instability at high pressures, it can be seen from Fig. 1

that the CsCl phase has the lower free energy at high pres-

sures. Any straight line on Fig. 1 represents a locus of constant

pressure, P, constant enthalpy, H, and (since T = 0) constant

Gibbs free energy, G, lines with steeper negative slopes having

higher values of these quantities (see VocÏadlo et al., 1999 for

further discussion). The dotted straight line shown in Fig. 1(b),

which corresponds to a pressure of 3.6 GPa, is the common

tangent to the E versus V curves of the two RuSi polymorphs.

For pressures above and below 3.6 GPa, therefore, the CsCl

and "-FeSi structures will, respectively, be the more stable. The

value of the transition pressure was obtained by inspection of

the calculated H versus P curves for the two phases. In

comparison with our previous results for FeSi (VocÏadlo et al.,

1999), RuSi has a much lower transition pressure (3.6 GPa as

opposed to 13 GPa) and a smaller difference in internal

energy at P = 0 (0.013 eV atomÿ1 as opposed to

0.042 eV atomÿ1), in accordance with the observation that

both phases of RuSi are stable at room temperature and

pressure.

3.3. Compressibility

Table 1 shows the values of the bulk modulus, K0, and its

®rst- and second-pressure derivatives, K0
0 and K0

00, obtained

from ®tting the E versus V curve to a fourth-order logarithmic

equation of state (`ln 4', see above). The table also shows the

values of K0 and K0
0 obtained by ®tting to the more commonly

used third-order Birch±Murnaghan equation (`BM3'; see

VocÏadlo et al., 1999, for details). Application of the two

equations of state to our results led to identical values of K0

for the "-FeSi phase [ln 4: 202.1 (1) GPa; BM3: 202 (3) GPa]

and values which differed by only 10 GPa (4%) for the CsCl

phase [ln 4: 243.6 (5) GPa; BM3: 233 (2) GPa; it should be

noted that the standard deviations quoted for the present

study are derived solely on the basis of the goodness of ®t to

the chosen equation of state and take no account of any

systematic errors in the simulation process]. The agreement

with experiment is also extremely good, Buschinger, Guth et

al. (1997) having obtained 215� 15 GPa and 255� 15 GPa for

the "-FeSi-type and CsCl-type materials, respectively. The

values of K0
0 agree less well, both between the two different

equations of state used in the present study and between this

study and the experimental values. However, this probably

simply re¯ects the greater sensitivity of this parameter to

changes in the model and to errors in the data. For the "-FeSi

phase we obtained values for K0
0 of 5.411 (8) (ln 4) and

4.49 (4) (BM3) and, for the CsCl phase, 4.800 (5) (ln 4) and

4.32 (3) (BM3), the corresponding experimental values

(Buschinger, Guth et al., 1997) being 7.63 and 6.71.
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Figure 1
(a) Internal energy versus volume for the "-FeSi and CsCl phases of RuSi.
Calculated values are indicated by points; the full lines show ®ts of the
data to a fourth-order logarithmic equation of state (for details see text).
(b) Internal energy versus volume around P = 0. The full and dashed lines
were obtained by ®tting the data to fourth-order logarithmic and third-
order Birch±Murnaghan equations of state, respectively. The common
tangent to the curves for the two structures, shown as a dotted line,
indicates that the CsCl phase will be stable for pressures greater than
3.6 GPa (for details see text).
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3.4. General remarks

From the discussion above it appears that the expected

high-pressure behaviour and properties of RuSi and FeSi

should be quite similar. Our calculations for RuSi reproduce

the results of the crystal structure re®nement very well and are

consistent with the measured electrical properties of both

phases of the material and with the observed greater stability

of the CsCl phase relative to the "-FeSi phase. As suggested

previously (VocÏadlo et al., 1999), it seems quite probable,

therefore, that bulk samples of the CsCl-type phase of FeSi

might be synthesized under conditions of high P and T. It is

most interesting that our calculated compressibility value for

the "-FeSi phase of RuSi appears to be in far better agreement

with experiment than was our result for FeSi itself. This

indicates that there do not, therefore, appear to be any general

¯aws in our calculations when applied to materials with this

rather unusual structure. In our previous paper it was

suggested that the discrepancy in the values of K0 might arise

from small variations in stoichiometry of the FeSi samples

used in the experiments, which could signi®cantly affect the

results. Although this suggestion is not without merit, bearing

in mind the known sensitivity of the RuSi phases to small

variations in composition, it is perhaps unlikely, since three

research groups using material from different sources were

able to obtain measured values of K0 for FeSi that are in

almost exact agreement (Sarrao et al., 1994; Ross, 1996; Guyot

et al., 1997). A possibly signi®cant difference between our

calculations for the two compounds is that in the case of FeSi

the unit-cell volume at P = 0 was underestimated, whereas for

RuSi it was overestimated, overestimation of V0 being the

more common occurrence when using the GGA and VASP;

Figure 2
Electronic density of states calculations for the "-FeSi phase of RuSi. (a) Total density of states (DOS). (b) Local DOS (LDOS) for Ru. (c) LDOS for Si.
(d) Total number of states (NOS). The position of the Fermi level, EF , is indicated by a vertical dashed line. Note that NOS is horizontal at EF , indicating
that the material is non-metallic. Core electrons are excluded from the calculation.



the reason for this difference is not, at present, clear. A similar

underestimate of the cell volume was reported by Moroni et al.

(1999) using the GGA and in all of the results obtained using

the LDA (Qteish & Shawagfeh, 1998; Moroni et al., 1999;

Jarlborg, 1999). Qteish & Shawagfeh (1998), when using the

GGA, did obtain an overestimated cell and it is probably

signi®cant that this calculation led to the lowest reported value

of K0. Important differences between RuSi and FeSi are found

in their magnetic properties, with the "-FeSi phase of RuSi

showing temperature-independent diamagnetism and FeSi

itself showing unusual temperature-dependent para-

magnetism. There is, however, no indication from neutron

diffraction at liquid-nitrogen temperature that FeSi has a

ground state which is magnetically ordered (Watanabe et al.,

1963), and neutron scattering studies of diffuse magnetic

intensity (Shirane et al., 1987; Tajima et al., 1988) seem to agree

well with the behaviour expected on the basis of temperature-

induced paramagnetism, as proposed originally by Jaccarino et

al. (1967). In this model, FeSi is assumed to have a non-

magnetic ground state, with thermal excitation of electrons

across a narrow band gap to states which are paramagnetic. In

our calculations for FeSi no net magnetic moment was found

and so it seems unlikely that neglect of magnetism provides an

explanation of the discrepancy in K0, unless the material has

an undetected antiferromagnetic phase existing in a

temperature range below that studied by Watanabe et al.

(1963). Recently, Sluchanko et al. (1998) detected an anom-

alous contribution to the Hall coef®cient below 7 K, which it

was suggested might arise from an electronic phase transition

to a state with a spin-density wave. Inclusion of magnetism in

Acta Cryst. (2000). B56, 369±376 VocÏadlo et al. � RuSi 375
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Figure 3
Electronic density of states calculations for the CsCl phase of RuSi. (a) Total density of states (DOS). (b) Local DOS (LDOS) for Ru. (c) LDOS for Si.
(d) Total number of states (NOS). The position of the Fermi level, EF , is indicated by a vertical dashed line. Note that NOS is not horizontal at EF ,
indicating that the material is metallic. Core electrons are excluded from the calculation.
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our ab initio calculations, if required, could produce a softer

material (i.e. a decreased value of K0) since, although it will

lower the internal energy for values of V corresponding to low

pressures and hence increase the corresponding values of P [=

ÿ(@E/@V)], this effect might be offset by a concomitant

increase in V0. The origin of the poor agreement between the

experimental and calculated bulk moduli of FeSi, therefore,

remains unresolved.
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Figure 4
Fractional coordinates of the Ru and Si atoms (solid symbols) as a
function of pressure (for convenience |xSi| is plotted). The open symbols
show the corresponding results for FeSi (VocÏadlo, Price & Wood, 1999).
The value of x required for the ideal sevenfold-coordinate structure is
shown by the horizontal line.


